
 Page 1 of 5

Automated Regression Testing

Automated Regression Testing ... 1

Choosing a test tool ... 1
Webinject test tool .. 1
Test Cases ... 1

config.xml ... 2
Conventions .. 2

Test case parameter conventions .. 3
Verifying Results .. 3
Running and Checking Results Online ... 4
Running webinject in batch .. 4

Sample Results .. 4

Choosing a test tool

The first step was to choose a tool or tools to perform the regression testing. The criteria for

choosing a tool were:

 Easy to use

 Easy to maintain

 Use similar technology to current technology used for development

 Open source preferred

 Must be able to run in batch unattended for large test case volumes

After investigating several tools, we selected the webinject open source tool

http://www.webinject.org. The reasons are as follows:

 It is simple to use. Test cases are defined in xml format.

 It uses Perl scripts and can be run in an interactive or batch mode.

 It was a very good fit for our initial foray into automated testing.

Webinject test tool

The webinject tool is used to define and run test cases for the IB-ARM product. This tool is used

for http testing. It submits an http request and then interrogates the http response.

The user manual for this tool is quite good and very easy to read. You can find it at:

http://www.webinject.org/manual.html

Test Cases

Test cases are defined based on the conventions of webinject.

http://www.webinject.org/
http://www.webinject.org/manual.html

 Page 2 of 5

config.xml

config.xml contains:

 The list of test case files (it is often better to organize test cases into multiple files rather

than one large file).

 Database name

 Site name

 other base parameters

Conventions

The major complication with IB-ARM was the http requests sent to the web server contain a

component id (compid) and sometimes a file id (fid). These id’s change with every database

load. So we needed a way to re-establish the compid’s and fid’s after each site refresh.

The solution was to use a batch script to execute a Perl program that searches the database, finds

the id’s and replaces the values within the test cases.

We established a convention for defining test cases.

$compid
For each test case, do the following:

 In the description1 field, specify the CompName, CompType and Scope.

 Based on these, the batch script will look up the compid and replace $compid with the

compid.

Example:
<case

 id="10170"

 description1="CompName=ABC6HS; CompType=STEP; scope=ABC"

 description2="View=Relationships"

 method="get"

 url="{BASEURL1}&view=RELN&comp=$compid"

/>

$compid and $fid
Sometimes a fileid is also required.

For each test case, do the following:

 In the description1 field, specify the CompName, CompType, Scope and View.

 Based on these, the batch script will look up the compid and replace $compid with the

compid. Also, it will look up the fileid and replace $fid with the fileid.

Example:
<case

 id="10054"

 description1="CompName=AB00004T; CompType=PRG; scope=ABC"

 description2="View=Source"

 method="get"

 Page 3 of 5

 url="{BASEURL1}&view=SRCL&comp=$compid&file=$fid"

/>

Test case parameter conventions

description1 field

CompName Component Name (i.e. long name)

RName Component RName (i.e. short name)

CompType Component Type

Scope Application

Sometimes the Component name is not sufficient; for example a JCL STEP = STEP010 – there

may be many STEPs with the same name. In this case, the Parent Component information must

be specified. The parameters are:

PCompName Parent Component Name (i.e. long name)

PRName Parent Component RName (i.e. short name)

PCompType Parent Component Type

description2 field

View View name

 Example:
<case

 id="10170"

 description1="CompName=XY6HS; CompType=STEP; scope=XYZ;

PCompName=XY01RETN; PCompType=JCL"

 description2="View=Relationships"

 method="get"

 url="{BASEURL1}&view=RELN&comp=$compid"

/>

Verifying Results

The test cases need to verify the content of the http response to ensure that the correct results are

being achieved. This is done via the verifypositive and verifynegative keywords. See the

webinject manual.

The contents on the verifypositive and verifynegative keywords can use regular expressions. We

use these extensively:

 .+ is used to specify 1 or more character of any value.

 Page 4 of 5

Note: Because your verification string is used as a regular expression (regex), the following

characters within it must be escaped with a backslash: {}[]()^$.|*+?\ The most common

characters that require an escape are the (and).

Running and Checking Results Online

Run the test cases by running webinjectgui.exe. Make sure your config.xml file and test case

files are in the same folder as webinjectgui.exe.

Click the “Run” button to execute.

We suggest you also check the “Response Timer Output” check box. This records and displays

the response time for each test case. The results are also graphed in the “Monitor” tab.

Running webinject in batch

We create a compiled version of webinject (webinject.exe) that can be run from a batch script.

We use 2 batch scripts to run the test cases in batch:

1. 01reptestcase.bat replace the id’s as described above

2. 02runWebinject.bat executes the testcases using webinject.exe. To run the webinject

The results.html file contains the results of the verifications. We can see:

 Passed (successful) test cases

 Failed test cases

 Totals

 Response Time of each test case. This will indicate views that are particularly slow.

Sample Results

Passed Test Case

Test: .\xml\testcases_ABC_rep.xml - 50010

CompName=PABC.PROD.SRCELIB; CompType=DFIL; Scope=ABC
View=Properties

Verify : "Name.+?PABC\.PROD\.SRCELIB"
Verify : "Application.+?ABC"
Verify : "Description.+?Source Library"
Passed Positive Verification
Passed Positive Verification
Passed Positive Verification
Passed HTTP Response Code Verification (not in error range
TEST CASE PASSED

Response Time = 0.147 sec

Failed Test Case

Test: .\xml\testcases_ABC_rep.xml - 53270

CompName=PABC.COPYLIB(ABC001C); CompType=CPY; Scope=ABC
View=All Relationships

 Page 5 of 5

Verify : "Belongs.+?to.+?Application.+?\(1\).+?ABC"
Verify : "Belongs.+?to.+?Library.+?\(1\).+?PABC\. COPYLIB"
Verify : "Includes.+?Copybook.+?\(1\).+?ABC001C1 "
Failed Positive Verification
Failed Positive Verification
Passed Positive Verification
Passed HTTP Response Code Verification (not in error range)
TEST CASE FAILED

Response Time = 0.14 sec

Test Results Summary

Start Time: Mon Nov 18 08:56:43 2013
Total Run Time: 528.768 seconds

Test Cases Run: 3544
Test Cases Passed: 3516
Test Cases Failed: 28
Verifications Passed: 11368
Verifications Failed: 51

Average Response Time: 0.139 seconds
Max Response Time: 8.127 seconds
Min Response Time: 0.042 seconds

